Senin, 18 Juni 2018

Sponsored Links

Term Structure of Interest Rates - Forward Rates - YouTube
src: i.ytimg.com

The advanced rate is the future yield on the bond. This is calculated using the yield curve. For example, the yield on the Treasury bill three months and six months from now is the forward rate .


Video Forward rate



Advanced rate calculation

To extract the forward rate, we need a zero coupon yield curve.

                           r                      1             ,             2                              {\ displaystyle r_ {1,2}}  bergantung pada mode perhitungan tarif ( sederhana , tahunan diperparah atau terus diperparah ), yang menghasilkan tiga hasil berbeda.

Mathematically it reads as follows:

Simple rate

                   (        1                     r                      1                                 t                      1                         )        (        1                     r                      1             ,             2                         (                t                       2                         -                t                      1                         )        )        =        1                     r                       2                                 t                       2                              {\ displaystyle (1 r_1 t_ 1) (1 r_ {1,2} (t_2 -t1)) = 1 r_2 t_2}  Â

Memecahkan untuk                            r                      1             ,             2                              {\ displaystyle r_ {1,2}}  menghasilkan:

Jadi                            r                      1             ,             2                         =                              1                                         t                                  2                                            -                             t                                  1                                                                             (                                                                      1                                                     r                                          2                                                                           t                                          2                                                                                        1                                                     r                                          1                                                                           t                                          1                                                                                             -            1                    )                     {\ displaystyle r_ {1,2} = {\ frac {1} {t_2 -t1}} \ kiri ({\ frac {1 r_2 t_2} {1 r_1 t1}} - 1 \ kanan)}  Â

                   (        1                     r                      1                                  )                                   t                              1                                                  (        1                     r                      1             ,             2                                  )                                   t                              2                                       -                         t                              1                                                  =        (        1                     r                       2                                  )                                   t                              2                                                       {\ displaystyle (1 r_ 1) t {1}} (1 r_ {1,2}) t t2 -t_ {1}} = (1 r_2) {t_2}}  Â

Memecahkan untuk                            r                      1             ,             2                              {\ displaystyle r_ {1,2}}  menghasilkan:                            r                      1             ,             2                         =                             (                                                             (                  1                                                     r                                          2                                                                          )                                                                 t                                                  2                                                                                                                                     (                  1                                                     r                                          1                                                                          )                                                                 t                                                  1                                                                                                                                         )                                              1                                               t                                      2                                                  -                                 t                                      1                                                                                    -        1             {\ displaystyle r_ {1,2} = \ kiri ({\ frac {(1 r_2) {t_2}} { 1 r1) {{1}}}} \ right) ^ {\ frac {1} {t_2 -t1}} - 1}  Â

Formula faktor diskon untuk periode (0, t)                                   ?                         t                                      {\ displaystyle \ Delta _ {t}}    diekspresikan dalam beberapa tahun, dan beri nilai                                    r                         t                                      {\ displaystyle r_ {t}}    untuk periode ini adalah                         D          F          (          0         ,          t         )          =                                  1                             (                1                                                r                                     t                                                                )                                                         ?                                             t                                                                                                                           {\ displaystyle DF (0, t) = {\ frac {1} {(1 r_ {t}) ^ {\ Delta _ {t}}}}}    , tarif maju dapat dinyatakan dalam bentuk faktor diskon:

                           r                      1             ,             2                         =                               (                                                              D               F              (              0              ,                             t                                  1                                             )                                      D               F              (              0              ,                             t                                  2                                             )                                                                       )                                                          1                                               t                                      2                                                  -                                 t                                      1                                                                                    -        1             {\ displaystyle r_ {1,2} = {\ bigg (} {\ frac {DF (0, t_ 1)} {DF (0, t_2)}} {\ bigg)} ^ {\ frac {1} {t_2 -t1}} - 1}  Â

Kecepatan majemuk terus menerus

                           e                                   r                              1                                                   t                              1                                                          e                                   r                              1                ,                2                                       (                         t                              2                                       -                         t                              1                                       )                        =                e                                   r                              2                                                   t                              2                                                       {\ displaystyle e ^ {r_ {1} t_ 1} e r {1,2} (t_2 -t1 )} = e ^ {r_2 t_2}}  Â

Memecahkan untuk                            r                      1             ,             2                              {\ displaystyle r_ {1,2}}  menghasilkan:                            r                      1             ,             2                         =                                                           r                                  2                                                           t                                  2                                            -                             r                                  1                                                           t                                  1                                                                                   t                                  2                                            -                             t                                  1                                                                    {\ displaystyle r_ {1,2} = {\ frac {r_2 t_2 -r1 {1} {2} - t_1}}}  Â

Formula faktor diskon untuk periode (0, t)                                   ?                         t                                      {\ displaystyle \ Delta _ {t}}    diekspresikan dalam beberapa tahun, dan beri nilai                                    r                         t                                      {\ displaystyle r_ {t}}    untuk periode ini adalah                         D          F          (          0         ,          t         )          =                     e                         -                             r                                 t                                                        ?                                 t                                                                  {\ displaystyle DF (0, t) = e ^ {- r_ {t} \ Delta _ {t}}}    , tarif maju dapat dinyatakan dalam bentuk faktor diskon:

                           r                      1             ,             2                         =                              1                                         t                                  2                                            -                             t                                  1                                                                   (        In                       D           F           (           0          ,                     t                          1                                 )                -        In                       D           F           (           0          ,                     t                          2                                 )                )             {\ displaystyle r_ {1,2} = {\ frac {1} {t_2 -t1}} (\ ln {DF ( 0, t1)} - \ ln {DF (0, t_2)})}  Â

                           r                      1             ,             2                              {\ displaystyle r_ {1,2}}  adalah tingkat maju antara waktu                            t                      1                              {\ displaystyle t_ {1}}  give waktu                            t                       2                              {\ displaystyle t_2}   ,

                                   r                         k                                      {\ displaystyle r_ {k}}    adalah hasil nol kupon untuk periode waktu                         (          0         ,                     t                         k                             )                  {\ displaystyle (0, t_ {k})}    , ( k = 1, 2).

Maps Forward rate



Instrumen terkait

  • Perjanjian tarif maju
  • Catatan tingkat mengambang

Currency Conversion Spot Rates Forward Rates Hedging Strategies ...
src: slideplayer.com


Lihat juga

  • Harga depan

CFA Level I Yield Measures Spot and Forward Rates Video Lecture by ...
src: i.ytimg.com


Referensi

Source of the article : Wikipedia

Comments
0 Comments